
Supplementary Methods for Risperidone response in patients with schizophrenia drives DNA methylation
changes in the immune and neuronal systems

Participants and response-to-medication assessment

The study group comprises patients diagnosed with schizophrenia  (SCZ) according to  the  Diagnostic and
Statistical  Manual  of  Mental  Disorders,  Fourth  Edition  (DSM-IV) and attending  the  regular  outpatient
services  at  the  Department  of  Psychiatry,  Jawaharlal  Institute  of  Postgraduate  Medical  Education  and
Research  (JIPMER) in  Puducherry,  India.  The  patients  were  all  Tamil  speaking  and recruited  between
August 2014 and August 2016. The inclusion criteria were: diagnosed schizophrenia, age above 18, a total
score at the Positive and Negative Syndrome Scale (PANSS) of at least 30 and newly prescribed risperidone.
Patients who were prescribed antipsychotics other than risperidone, substance abusing patients and pregnant
or lactating women were excluded from the study. Treatment compliance was confirmed by the patients’
family members or caregivers and patients who did not take risperidone for five consecutive days during the
study period were excluded from the study. Duration of psychosis varied between one month and 12 years
(median = 21 months, IQR (interquartile range) [6 months, 48 months], mean = 32 months). Whereas some
participants had already been treated for SCZ at some point during their life, none of them received any
antipsychotic medication at least four weeks before the baseline visit. At the baseline, the participants started
treatment with 4-8 mg of risperidone per day. All except one were comedicated with at least one additional
medicament to alleviate side effects: clonazepam for sleep (0.5-1 mg/day as required before going to bed)
and trihexyphenidyl for extrapyramidal symptoms (2-4 mg/day). 

Treatment response was assessed using the total PANSS score.  Briefly,  symptome severity at  the  baseline
and follow-up visit four weeks later was calculated as a sum of scores on a positive, negative and a general
psychopathology scale. Patients with at least 20% reduction of PANSS score after four weeks of treatment
were categorized as good responders, while the rest were considered as bad responders [1].

Patients’ characteristics summary, including the differences between the good and bad responders  can be
found in Table 1 in the article. The cohort comprises 12 Tamil women and 16 Tamil men, aged 18-60 (mean
= 32.9, median = 32.5). The majority (N = 20, 71.5%) were non-smokers and never consumed alcohol (N =
23,  88%).  We  found  no  significant  difference  in  age,  weight,  alcohol  and  tobacco  use  or  prescribed
risperidone dose between the good and bad responders. Informed consent was obtained from each study
participant and the patient’s legally acceptable representative (LAR) or a family member. The Institutional
Ethics Committee approved the study protocol before the commencement of the study (IEC Project No.
JIP/IEC/4/2013/189).

Sampling and generation of raw methylome data

The blood of 28 recruited patients was collected at the baseline (V = 7 ml) and follow-up visit (V = 5ml)
between  9-11  AM,  resulting  in  a  total  of  56  samples.  Blood  cells  were  separated  by  centrifugation
immediately after sample collection and were stored at -80°C until the DNA extraction. DNA was extracted
using QIAamp Blood Midi  Kit  (Qiagen,  Germany)  according to  the  manufacturer’s  protocol.  All  DNA
samples  were  quantified  in  fluorescence  (Quant-IT  kits,  ThermoFischer  Scientific),  in  duplicate.  DNA
quality  and integrity  were assessed with TapeStation 4200 (Agilent  technologies Inc.,  Santa  Clara,  CA,
U.S.A.) and by PCR amplification for 10 % of the extracted samples and all had a DNA integrity number
(DIN) higher than 7. Bisulfite conversion of 1µg of genomic DNA was done by using EpiTect Fast 96
Bisulfite Kit (Qiagen, Germany) and genome-wide methylation was  screened using Infinium Methylation
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EPIC BeadChip [2] on the CNRGH automated platform, following the manufacturer’s protocol (Illumina
Inc., USA). 

Quality control of methylation data

Quality  control,  preprocessing,  statistical  analysis  and  data  visualization  were  all  done  in  R  statistical
framework [3], version 4.1.3). 
Raw intensity data was imported into R using the  minfi  v.  1.38.0  package [4,5].  The first  step was the
exclusion of low quality probes, as they can negatively influence the normalization procedure [6], and of
low-quality samples, which could affect statistical inference [7].  Briefly, we first  identified low-intensity
probes  by  calculating detection  p-values  (threshold = 0.05)  based on the  non-specific  fluorescence and
performed the control metrics check using the ewastools v. 1.7 package [7,8]. In addition, we ran quality
checks with  ENmix v. 1.28.8 [9] and  minfi [4,5] packages. We then checked for mismatches between the
predicted and actual sex and between the predicted genotypes for paired samples [7]. In addition, we checked
if  any  of  the  samples  fulfilled  at  least  two of  the  following criteria:  median  of  unmethylated  (U)  and
methylated (M) log raw intensities < 10 (as defined by the minfi “plotQC” function), failed ewastools control
metrics [7] or  ENmix  v. 1.28.8 [9] quality check (samples below 3x SD of bisulfite control intensities or
samples with >5% low quality probes, based on the detection p-values and number of beads). All samples
passed our quality control criteria. Regarding the probes, we removed previously identified 44,570 cross-
reactive probes (binding to multiple sites in the genome [10,11]) and low-quality probes fulfilling any of the
following  criteria:  25%  detection  p-values  above  0.05,  the  intensity  above  3x  IQR  of  average  U+M
intensities, probes with high (>3x IQR) SD over the beads or the probes with the mean intensities calculated
from less than median 5 beads per sample [6]. Sex chromosome probes and probes with SNPs at the target
site were not  excluded at  this  step.  The quality control  reduced the number  of  probes  from 865,859 to
821,287.

Within-array normalization

To reduce the amount of technical variation within a single array, we performed a three-step (background,
dye-bias and design-bias correction) normalization of the data. Specifically, we used the noob method (minfi
v. 1.38.0), based on the out-of-band intensities of all probes in the array [12], for the background correction,
followed by dye-bias correction using RELIC (REgression on Logarithm of Internal Control probes), which
adjusts the green intensities based on their predicted values from linear regression with the corresponding red
intensities as predictors [13]. Finally, we performed design-bias correction, accounting for the differences in
the dynamic range of type I and type II probes, using the BMIQ (Beta MIxture Quantile dilation) method
[14] implemented in the wateRmelon v. 1.36.0 package [15]. 

Estimation of blood cell type composition from the methylation data

Blood is a mixture of cell types with specific DNAm profiles. Proportions of these cells vary with age and
physiological conditions [16]. Thus, leukocyte composition is an important source of DNAm variability, and
failing to account for it can result in spurious conclusions due to confounding with other factors (for review
see [17]). To estimate the relative abundances of six leukocyte types (neutrophiles/granulocytes, CD4+ and
CD8+  T-cells,  B-cells,  monocytes  and  NK cells),  we  used  the  method  implemented  in  the  R  package
flow.sorted.blood.EPIC  v. 1.10.1 on the background-corrected data as advised by the authors [18]. As the
blood cell types per se were not of primary interest in this study and six additional variables could negatively
affect inference, we reduced the dimensionality of the leukocyte composition data by performing a principal
component analysis (PCA), using the  vegan v. 2.5-7 package [19] on the six cell types and extracting the
axes  that  accounted  for  the  majority  of  the  observed variation.  As the  first  principal  component  (PC1)
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accounted  for  84.6%  of  variation,  we  used  it  instead  of  composition  data  to  present  the  cell  type
heterogeneity in our analyses. This axis strongly positively correlated with the proportion of neutrophils and
negatively with other leukocyte types (Supplementary Figure 1).

Estimation of unwanted variation (batch effects)

Although the methods, such as the empirical Bayes method developed by  Johnson et al. [20] can remove
unwanted variation directly from the methylation data, we decided not to use this approach, as it may result
in false positives, especially so for unbalanced designs and small sample sizes [21,22]. We thus opted for the
inclusion of batch effects as covariates in the statistical analysis.  We first created a “control matrix”, as
described  in  Fortin  et  al.  [23],  summarizing  control  and  out-of-band  probes,  whose  values  should  be
independent  of  biological  variation.  Other  factors  describing  technical  variation  included  chip  identity,
position on the chip and sampling centre. To avoid overfitting due to a high number of independent variables
in the models and to prevent false positives due to a tendency of multilevel factors to appear significant in
the statistical analysis, we decided to reduce the dimensionality of the batch effect data by performing a
factor analysis using the FactoMineR v. 2.4 package [24] with the control matrix, chip ID, position on the
chip and sampling centre as input variables. We then selected the first  two axes, describing 42% of the
unwanted variation (Supplementary Figure 2), as covariates for the statistical analysis.

Exploratory multivariate analysis

In order to examine global blood methylation patterns, we used  FactoMineR to perform a PCA on all 56
samples. Considering that using all of the CpGs would be computationally expensive and most of the probes
were barely variable anyway, we first filtered out all the probes with SD of beta-values distribution < 0.1, as
methylation differences Δβ < 0.1 are often due to technical rather than biological variation [6]. In addition,
we removed the probes situated on the sex chromosomes as they would obscure autosomal DNAm variation.
This  filtering  step  reduced  the  size  of  the  dataset  to  39,239  autosomal  probes.  This  initial  PCA
(Supplementary Figure 3) revealed two outlier individuals (P9 and P14) that were excluded from further
analysis.  Of note,  these two individuals had nothing conspicuous in common (they differed by sex and
response to treatment from one another, had distinct DNAm profiles according to the PCA and did not differ
from other patients either by duration of psychosis or comedication). In both cases, the samples from the
same individual grouped together, indicating that the lack of similarity to other samples was probably due to
unknown sources of biological variation (e.g. genetics or physiological condition). All the reported results
are based on the remaining 52 samples from 26 individuals (19 good and seven bad responders).

To assess the difference in magnitude of medication-induced methylome changes between the good and bad
responders, we calculated pairwise Mahalanobis (multivariate) distances between the paired samples, and
used these as a dependent variable in a linear regression model (Mahalanobis distances ~ response). In order
to identify CpGs significantly correlated (absolute value of the correlation coefficient ≥0.2) with the main
axes  (PC1  and  PC2)  representing  the  methylome  variation,  and  to  assess  the  relationship  between  the
risperidone treatment response and other factors (baseline and follow-up PANSS scores, visit, sex, smoking,
alcohol  use,  blood cell  type composition,  chip number,  position on the chip,  patient  identity,  unwanted
variation) and these axes,  we calculated the corresponding correlations using  dimdesc  function from the
FactoMineR package[24]. 

Gene annotation and pathway analyses

In order to gain insight into the function of genes associated with the CpGs significantly correlated with
either  positive  or  negative sides  of  the  two main principal  components (PCs),  we conducted a  gene-set

3

95

100

105

110

115

120

125

130

135



enrichment analysis for each of the four groups of the CpGs separately (i.e. PC1-, PC1+, PC2-, PC2+, see
Figure 1D) using the gometh method [25] implemented in the missMethyl v. 1.26.1 package [26] and a CpG
universe reduced to the variable 39,239 probes to avoid sample source bias [27]. The method accounts for
the number of CpGs annotated to a single gene as well as for the CpGs annotated to multiple genes. We
tested  for  the  enrichment  of  Kyoto  Encyclopedia  of  Genes  and  Genomes  (KEGG)  pathways  and gene
ontology  (GO)  categories.  Both  databases  contain  a  large  number  of  categories/pathways  to  be  tested,
strongly reducing the likelihood for any of the p-values to remain significant at any of the commonly used
significance cutoffs after the multiple testing correction in the small datasets. However, gene-set enrichment
analysis  is  a multi-step procedure and some authors argue that  a p-value adjustment does  not  correctly
account for the family-wise error rate and advise to use raw p-values and term ranking to select potentially
interesting pathways and processes instead [28]. Therefore, we decided to keep the terms/pathways with raw
p≤0.01  and  containing  at  least  three  differentially  methylated  genes  in  case  of  GO  terms,  or  5%  of
differentially methylated genes for KEGG pathways. In addition, we included only the KEGG pathways with
at least 10% genes covered by the CpG universe and pathway size between 15-500 genes to reduce the effect
of large pathways on the analysis [29]. In order to simplify the interpretation of the GO enrichment analysis
results,  we used the  GOxploreR  v.  1.2.4 package to prioritize GO terms [30] and  GOSemSim v.  2.18.1
package  [31,32]  to  group  them  based  on  their  semantic  similarity  (0.7  similarity  threshold,  Relevance
method [33]). We visualized the results using GOxploreR v. 1.2.4 [30], rrvgo v. 1.4.4 [34,35] and pheatmap
v. 1.0.12 [36] packages. In addition, we performed a gene-set enrichment analysis of the variable 39,239
autosomal  CpGs with all  probes on the chip that  passed our  quality control  step (N = 821,287)  as the
universe in order to identify functional categories that were over-represented in the variable portion of the
blood methylome of our cohort. 

Association between individual CpG methylation levels and risperidone response

In order to explore the relationship between the treatment response and the methylation values of the CpGs
annotated to the genes associated with the enriched functional terms, we ran generalized linear mixed models
with beta family (glmmTMB v. 1.1.2.3 package [37]) using visit, response (defined either as binary variable
or %PANSS improvement) and visit x response interaction as variables of interest. We ran two models for
each CpG-response type combination, i.e. with and without covariates in order to account for other likely
sources of methylome variation.  The covariates included:  leukocyte composition,  sex,  smoking and two
variables describing the unwanted variation (s. the procedure above). Patient identity was added as a random
variable (model formula: CpG beta value ~ visit * response + smoking + sex + blood cell type composition
PC1 + unwanted variation PC1 + unwanted variation PC2 + (1|patient)).  We removed the models with
convergence,  multicollinearity,  outlier,  uniformity  and  dispersion  issues  (DHARMa  v.0.4.6,  [38].  We
compared these models to the corresponding null models with a likelihood ratio test (LRT) to obtain a model
significance  and  subsequently  adjusted  the  p-values  for  multiple  testing  using  the  Benjamini-Hochberg
procedure. However, due to the exploratory nature of our analysis, we included all the models with raw p-
values  ≤  0.05 in  the  results.  Still,  we clearly  indicate  which  models  remained significant  at  0.05 level
following the B-H correction. In addition, we wanted to determine if the CpGs associated with the same gene
behave in a similar way. To do this, we calculated the proportion of differentially methylated vs. total number
of probes associated with the genes of interest on the chip. We also checked for the experimental evidence of
correlation between the blood and brain methylation values of these CpGs using IMAGE-CpG tool [39].
Finally, we used the top twenty CpGs associated with the main effect of response or the CpGs with the
absolute value of coefficient estimates from glmmTMB ≥0.18 for the response x visit interaction to try to
predict  the response to treatment using the stability variable selection method (package  mboost  v.  2.9-5
[40,41]). The reason we limited the variable selection procedure based on the response-specific CpGs to
twenty is computational feasibility.
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Data and code availability

All data including R objects and figures that are not included as a supplementary material are available on
Figshare. Raw methylation intensity data are deposited in the ArrayExpress repository under the accession
number E-MTAB-11921. All scripts necessary to reproduce the presented analysis are available upon request
from the authors.
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